EE 435

Lecture 20

Linearity in Operational Amplifiers
-- The differential pairs

Lecture 19 executive summary

Thank You Robert

Assessing open loop gain:

- Break the loop at input or output (for voltage series, current series, break loop at output and measure vout; for current-shunt and voltage-shunt measure iout)
-Test bench for $A_{\mathrm{V}_{0}}$ should use a test network that does not affect open loop gain as the β network could be unstable
Gain enhancement strategies:
- Change excitation by decreasing the denominator and/or increasing numerator of AVO which almost doubles gain and GB by including gm of the counterpart circuit in the numerator
- Drive counterpart circuit with -Vout, DC gain now subtracts gMCC from denominator of CC

Regenerative Feedback:

- Gain can be made arbitrarily large by selecting gmP1 correctly; GB does not degrade
- Cross coupling outputs in a differential structure has the same effect as using two amplifiers
- Infinite DC gain when gmp1 = gof1 +gop1
- If gmp1 > gof1 +gop1 the amp will be unstable because the pole will be in the RHP
- Feedback amp is usually stable even if open loop amp is unstable because the numerator of $A v$ doesn't change signs when the constant changes signs
- feedback performance can actually be enhanced if the open-loop amplifier is unstable because the right half plane pole has better settling time

Alternative positive feedback amplifier

- requires precise matching of gm4 to (go2+go4+go6) for good gain enhancement, which is difficult to do

Gain Enhancement with Regenerative Feedback

$$
\begin{gathered}
A_{V 0}=\frac{-g_{m F 1}}{s C_{L}+g_{o F 1}+g_{o p 1}-g_{m P 1}} \\
A_{V 0}=\frac{g_{m F 1}}{g_{o F 1}+g_{o P 1}-g_{m P 1}} \\
B W=\frac{g_{o f 1}+g_{o p 1}-g_{m P 1}}{C_{L}} \\
G B=\frac{g_{m F 1}}{C_{L}}
\end{gathered}
$$

The gain can be made arbitrarily large by selecting $\mathrm{gmP1}$ appropriately

The GB does not degrade !
But - can we easily build circuits with this property?

Gain Enhancement with Regenerative Feedback

But - can we easily build circuits with this property?

- But - the inverting amplifier may be more difficult to build than the op amp itself!
- YES - simply by cross-coupling the outputs in a fully differential structure

Review from last lecture

Gain Enhancement with Regenerative Feedback

It can be shown that the feedback amplifier is usually stable even if the open-loop Op amp is unstable

How?

$$
\mathrm{p}_{\mathrm{FB}}= \begin{cases}-\tilde{p}_{1}\left(1+\beta \mathrm{A}_{\mathrm{V} 0}\right)=\mathrm{p}_{1}\left(1+\beta \mathrm{A}_{\mathrm{V} 0}\right) & \text { for } \mathrm{p}_{1}<0 \\ -\tilde{\mathrm{p}}_{1}\left(1-\beta \mathrm{A}_{\mathrm{V} 0}\right)=\mathrm{p}_{1}\left(1-\beta \mathrm{A}_{\mathrm{V} 0}\right) & \text { for } \mathrm{p}_{1}>0\end{cases}
$$

Open-Loop and Closed-Loop Pole Plot for equal open-

Gain Enhancew frment with Regenerative Feedback

The feedback performance can actually be enhanced if the open-loop amplifier is unstable Why?

- Time required to get in settling window can be reduced with RHP pole
- But, if pole is too far in RHP, response will exit top of window

Up to this point all analysis of the op amp has focused on small-signal gain characteristics

Linearity of the amplifier does play a role in linearity and spectral performance of feedback amplifiers

Linearity is of major concern when the op amp is used open-loop such as in OTA applications

A major source of linearity is often associated with the differential input pair

Will consider linearity of the input differential pairs

Signal Swing and Linearity

Signal swing identifies range over which signals can be applied and still maintain operation of devices in desired region of operation

Some subset of the signal swing range will be quite linear

Often that subset is close to the entire signal swing range

Signal Swing and Linearity

Ideal Scenario:

Completely Linear over Input and Output Range

Signal Swing and Linearity

Realistic Scenario:

- Modest Nonlinearity throughout Input Range
- But operation will be quite linear over subset of this range

Signal Swing and Linearity

Linearity of Amplifiers

Single-Stage

Linearity of differential pair of major concern

Two-Stage

Linearity of common-source amplifier is of major concern (since signals so small at output of differential pair)

Differential Input Pairs

MOS Differential Pair

Bipolar Differential Pair

MOS Differential Pair

$$
\begin{aligned}
& \left.\begin{array}{rl}
I_{D 1}=\frac{\mu C_{o x} W}{2 L} & \left(V_{1}-V_{s}-V_{T}\right)^{2} \\
I_{D 2}=\frac{\mu C_{o x} W}{2 L} & \left(V_{2}-V_{s}-V_{T}\right)^{2} \\
I_{D 1}+I_{D 2}=I_{T} \\
\pm \sqrt{D_{D 1}} \sqrt{\frac{2 L}{\mu C_{o x} W}}=V_{1}-V_{S}-V_{T} \\
\pm \sqrt{I_{D 2}} \sqrt{\frac{2 L}{\mu C_{O x} W}}=V_{2}-V_{S}-V_{T}
\end{array}\right\}
\end{aligned}
$$

$\mathbf{V}_{\mathrm{d}}=\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}}$

$$
\begin{aligned}
& V_{d}= \pm \sqrt{\frac{2 L}{\mu C_{0 X} W}}\left(\sqrt{l_{T}-I_{D 1}}-\sqrt{D_{D 1}}\right) \\
& V_{d}= \pm \sqrt{\frac{2 L}{\mu C_{0 X} W}}\left(\sqrt{D_{D 2}}-\sqrt{I_{T}-I_{D 2}}\right)
\end{aligned}
$$

Transfer Characteristics of MOS Differential Pair

MOS Differential Pair

$$
\begin{aligned}
& V_{d}= \pm \sqrt{\frac{2 L}{\mu C_{O X} W}}\left(\sqrt{I_{T}-I_{D 1}}-\sqrt{I_{D 1}}\right) \\
& V_{d}= \pm \sqrt{\frac{2 L}{\mu C_{0 X} W}}\left(\sqrt{I_{D 2}}-\sqrt{I_{T}-I_{D 2}}\right)
\end{aligned}
$$

What values of V_{d} will cause all of the current to be steered to the left or the right ?

Setting $I_{D 1}=0$ obtain:

$$
\mathbf{V}_{\mathrm{dx}}= \pm \sqrt{\frac{2 \mathrm{~L}}{\mu \mathrm{C}_{\mathrm{ox}} \mathbf{W}}}\left(\sqrt{I_{\mathrm{T}}}\right)
$$

Transfer Characteristics of MOS Differential Pair

$$
V_{d}=\sqrt{\frac{2 L}{\mu C_{0 x} W}}\left(\sqrt{I_{D 2}}-\sqrt{I_{T}-I_{D 2}}\right)
$$

$$
\mathbf{V}_{\mathrm{dx}}= \pm \sqrt{\frac{\mathbf{2 L}}{\boldsymbol{\mu} \mathrm{C}_{\mathrm{ox}} \mathbf{W}}}\left(\sqrt{\boldsymbol{I}_{\mathrm{T}}}\right)
$$

- Have naturally expressed V_{dx} in natural parameter domain
- This expression does not provide good insight into actual swing

From device model:

$$
\frac{I_{T}}{2}=\frac{\mu C_{O X} W}{2 L}\left(V_{E B}\right)^{2} \quad \square \quad V_{E B}=\sqrt{I_{T}} \sqrt{\frac{L}{\mu C_{O X} W}}
$$

Observe !!

$$
\mathbf{V}_{\mathrm{dx}}= \pm \sqrt{2} \mathbf{V}_{\mathrm{EB}}
$$

Transfer Characteristics of MOS Differential Pair

$V_{E B}$ affects linearity
How linear is the amplifier?

How linear is the amplifier? $\mathbf{I}=\mathbf{m V} \mathbf{d}_{\mathrm{d}}+\mathbf{h}$

$$
V_{d}=\sqrt{\frac{2 L}{\mu C_{o x} \mathbf{W}}}\left(\sqrt{I_{T}-I_{D 1}}-\sqrt{I_{D 1}}\right)
$$

Consider the fit line:

$$
\mathbf{I}=\mathbf{m} \mathbf{V}_{\mathbf{d}}+\mathbf{h}
$$

$$
\text { When } V_{d}=0, \mathrm{l}=\mathrm{I}_{\mathrm{T}} / 2 \text {, thus }
$$

$$
\begin{aligned}
\mathbf{h} & =\frac{\mathbf{l}_{\mathbf{T}}}{\mathbf{2}} \\
\mathbf{V}_{\text {dint }} & =-\frac{\mathbf{h}}{\mathbf{m}}=-\frac{\mathbf{l}_{\mathbf{T}}}{\mathbf{2 m}} \\
\mathbf{m} & =\left.\frac{\partial \mathbf{l}_{\mathbf{D} 1}}{\partial \mathbf{V}_{d}}\right|_{\mathbf{Q}-\mathrm{pt}} \\
\mathbf{Q}-\mathrm{pt} & =(0, \mathrm{~h})
\end{aligned}
$$

How linear is the amplifier?

$$
\mathbf{V}_{\mathrm{dint}}=-\frac{\mathbf{h}}{\mathbf{m}}=-\frac{\mathbf{I}_{\mathrm{T}}}{2 \mathbf{m}}
$$

Thus fit line is:

$$
I=-\frac{I_{T}}{2 V_{E B 1}} V_{d}+\frac{I_{T}}{2}
$$

$$
V_{d}=\sqrt{\frac{2 L}{\mu C_{\mathrm{ox}} \mathbf{W}}}\left(\sqrt{I_{\mathrm{T}}-I_{\mathrm{D} 1}}-\sqrt{I_{\mathrm{D} 1}}\right)
$$

$$
\mathbf{m}=\left.\frac{\partial \mathbf{I}_{\mathbf{D} 1}}{\partial \mathbf{V}_{\mathbf{d}}}\right|_{\mathbf{Q}-\mathbf{p t}}
$$

$$
\frac{\partial \mathbf{V}_{\mathrm{d}}}{\partial \mathrm{I}_{\mathrm{D} 1}}=\sqrt{\frac{\mathbf{2 L}}{\boldsymbol{\mu} \mathrm{C}_{\mathrm{Ox}} \mathbf{W}}}\left(\frac{\mathbf{1}}{\mathbf{2}}\left(\mathrm{I}_{\mathrm{T}}-\mathrm{I}_{\mathrm{D} 1}\right)^{-1 / 2}(-\mathbf{1})-\left.\frac{\mathbf{1}}{\mathbf{2}}\left(\mathrm{I}_{\mathrm{D} 1}\right)^{-1 / 2}\right|_{\text {Q-point }}\right.
$$

$$
\frac{\partial \mathbf{V}_{\mathrm{d}}}{\partial \mathbf{I D}_{\mathrm{O}}}=-\mathbf{2} \sqrt{\frac{\mathbf{L}}{\boldsymbol{\mu} \mathbf{C}_{\mathrm{ox}} \mathbf{W}}} \sqrt{\frac{\mathbf{1}}{\mathbf{I}_{\mathrm{T}}}}
$$

$$
\sqrt{\frac{\mathrm{L}}{\mu \mathrm{C}_{\mathrm{ox}} \mathbf{W}}}=\frac{\mathrm{V}_{\mathrm{EB} 1}}{\sqrt{\boldsymbol{I}_{\mathrm{T}}}}
$$

$$
\frac{\partial \mathbf{V}_{\mathrm{d}}}{\partial \mathrm{I}_{\mathrm{D} 1}}=-\mathbf{2} \frac{\mathbf{V}_{\mathrm{EB} 1}}{\mathbf{I}_{\mathrm{T}}}
$$

$$
\mathbf{m}=\left.\frac{\partial \mathbf{I}_{\mathrm{D} 1}}{\partial \mathbf{V}_{\mathrm{d}}}\right|_{\mathbf{Q}-\mathrm{pt}}=-\frac{\mathbf{I}_{\mathrm{T}}}{2 \mathbf{V}_{\mathrm{EB} 1}}
$$

How linear is the amplifier?

How linear is the amplifier?

It can be shown that a 1% deviation from the straight line occurs at $V_{d} \cong \frac{V_{E B}}{3} \quad$ and a 0.1% variation occurs at $\quad V_{d} \cong \frac{V_{E B}}{10}$

How linear is the amplifier?

How linear is the amplifier ?
 Deviation from Linear

How linear is the amplifier?

Distortion in the differential pair is another useful metric for characterizing linearity of $I_{D 1}$ and $I_{D 2}$ with sinusoidal differential excitation

Consider again the differential pair and assume excited differentially with

$$
V_{2}=\frac{V_{d}}{2} \quad V_{1}=-\frac{V_{d}}{2} \quad \text { and assume } V_{d}=V_{m} \sin (\omega t)
$$

$$
\mathbf{V}_{\mathrm{d}}=\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{1}
$$

Recall:

$$
V_{d}=\sqrt{\frac{2 L}{\mu C_{O X} W}}\left(\sqrt{I_{D 2}}-\sqrt{I_{T}-I_{D 2}}\right)
$$

Define (strictly for notational convenience)

$$
\theta=\frac{\mu C_{o x} W}{2 L}
$$

Thus can express as

$$
\sqrt{\theta} V_{d}=\sqrt{l_{D 2}}-\sqrt{I_{T}-I_{D 2}}
$$

How linear is the amplifier?

$$
\begin{array}{cc}
V_{d}=V_{m} \sin (\omega t) & \theta=\frac{\mu C_{0 X} W}{2 L} \\
\sqrt{\theta} V_{d}=\sqrt{I_{D 2}}-\sqrt{I_{T}-I_{D 2}} &
\end{array}
$$

Squaring, regrouping, and squaring we obtain

$$
\begin{aligned}
& \theta V_{d}^{2}=I_{D 2}+\left(I_{T}-I_{D 2}\right)-2 \sqrt{I_{D 2}} \sqrt{I_{T}-I_{D 2}} \\
& \theta V_{d}^{2}=I_{T}-2 \sqrt{I_{D 2}} \sqrt{I_{T}-I_{D 2}} \\
& \left(\theta V_{d}^{2}-I_{T}\right)^{2}=4 I_{D 2}\left(I_{T}-I_{D 2}\right)
\end{aligned}
$$

This latter equation can be expressed as a second-order polynomial in $\mathrm{I}_{\mathrm{D} 2}$ as

$$
\mathrm{I}_{\mathrm{D} 2}^{2}-\mathrm{I}_{\mathrm{D} 2} \mathrm{I}_{\mathrm{T}}+\left(\frac{\theta \mathrm{V}_{\mathrm{d}}^{2}-\mathrm{I}_{\mathrm{T}}}{2}\right)^{2}=0
$$

How linear is the amplifier?

and assume $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$

$$
\theta=\frac{\mu C_{0 x} W}{2 L}
$$

$$
\mathrm{I}_{\mathrm{D} 2}^{2}-\mathrm{I}_{\mathrm{D} 2} \mathrm{I}_{\mathrm{T}}+\left(\frac{\theta \mathrm{V}_{\mathrm{d}}^{2}-\mathrm{I}_{\mathrm{T}}}{2}\right)^{2}=0
$$

Solving, we obtain

$$
\begin{gathered}
I_{D 2}=\frac{I_{T}}{2}+\sqrt{\left(\frac{I_{T}}{2}\right)^{2}-\left(\frac{\theta V_{d}^{2}-I_{T}}{2}\right)^{2}} \\
I_{D 2}=\frac{I_{T}}{2}+\sqrt{\left(\frac{I_{T}}{2}\right)^{2}-\left(\frac{\theta V_{d}^{2}}{2}\right)^{2}-\left(\frac{I_{T}}{2}\right)^{2}+\frac{\theta I_{T}}{2} V_{d}^{2}} \\
I_{D 2}=\frac{I_{T}}{2}+\sqrt{\frac{\theta I_{T}}{2} V_{d}^{2}-\left(\frac{\theta V_{d}^{2}}{2}\right)^{2}}
\end{gathered}
$$

How linear is the amplifier?

and assume $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$

$$
\theta=\frac{\mu C_{o x} W}{2 L}
$$

$$
\mathrm{I}_{\mathrm{D} 2}=\frac{\mathrm{I}_{\mathrm{T}}}{2}+\sqrt{\frac{\theta \mathrm{I}_{\mathrm{T}}}{2} \mathrm{~V}_{\mathrm{d}}^{2}-\left(\frac{\theta \mathrm{V}_{\mathrm{d}}^{2}}{2}\right)^{2}}
$$

This can be expressed as

$$
\mathrm{I}_{\mathrm{D} 2}=\frac{\mathrm{I}_{\mathrm{T}}}{2}+\mathrm{V}_{\mathrm{d}} \sqrt{\frac{\theta \mathrm{I}_{\mathrm{T}}}{2}} \sqrt{1-\mathrm{V}_{\mathrm{d}}^{2} \frac{\theta}{2 \mathrm{I}_{\mathrm{T}}}}
$$

Recall for x small
$\sqrt{1-x} \cong 1-\frac{x}{2}-\frac{x^{2}}{8}+\ldots$

Using a Truncated Taylor's series, we obtain:

$$
\mathrm{I}_{\mathrm{D} 2} \simeq \frac{\mathrm{I}_{\mathrm{T}}}{2}+\mathrm{V}_{\mathrm{d}} \sqrt{\frac{\theta \mathrm{I}_{\mathrm{T}}}{2}}\left(1-\mathrm{V}_{\mathrm{d}}^{2} \frac{\theta}{4 \mathrm{I}_{\mathrm{T}}}\right)
$$

Note this has no second-order term thus the dominant distortion when $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$ will be due to the third-order term

How linear is the amplifier ?

$$
\mathrm{I}_{\mathrm{D} 2} \simeq \frac{\mathrm{I}_{\mathrm{T}}}{2}+\mathrm{V}_{\mathrm{d}} \sqrt{\frac{\theta \mathrm{I}_{\mathrm{T}}}{2}}\left(1-\mathrm{V}_{\mathrm{d}}^{2} \frac{\theta}{4 \mathrm{I}_{\mathrm{T}}}\right)
$$

$$
\theta=\frac{\mu C_{0 x} W}{2 L}
$$

Substituting in $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$

$$
\begin{aligned}
& I_{D 2} \simeq \frac{I_{T}}{2}+V_{m} \sin (\omega t) \sqrt{\frac{\theta I_{T}}{2}}\left(1-V_{m}^{2} \sin ^{2}(\omega t) \frac{\theta}{4 I_{T}}\right) \\
& I_{D 2} \simeq \frac{I_{T}}{2}+\left[V_{m} \sqrt{\frac{\theta I_{T}}{2}}\right] \sin (\omega t)-\left[V_{m}^{3} \frac{\theta^{\frac{3}{2}}}{4 \sqrt{2} \sqrt{I_{T}}}\right] \sin ^{3}(\omega t) \\
& \sin ^{3}(\omega t)=\frac{3}{4} \sin (\omega t)-\frac{1}{4} \sin (3 \omega t) \\
& I_{D 2} \simeq \frac{I_{T}}{2}+\left[V_{m} \sqrt{\frac{\theta I_{T}}{2}}\right] \sin (\omega t)-\left[V_{m}^{3} \frac{\theta^{\frac{3}{2}}}{4 \sqrt{2} \sqrt{I_{T}}}\right]\left[\frac{3}{4} \sin (\omega t)-\frac{1}{4} \sin (3 \omega t)\right] \\
& I_{D 2} \simeq \frac{I_{T}}{2}+\left[V_{m} \sqrt{\frac{\theta I_{T}}{2}}-V_{m}^{3} \frac{3 \theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{I_{T}}}\right] \sin (\omega t)+\left[V_{m}^{3} \frac{\theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{I_{T}}}\right][\sin (3 \omega t)]
\end{aligned}
$$

How linear is the amplifier?

$$
\begin{aligned}
& I_{D 2} \approx \frac{I_{T}}{2}+V_{d} \sqrt{\frac{\theta I_{T}}{2}}\left(1-V_{d}^{2} \frac{\theta}{4 I_{T}}\right) \quad \theta=\frac{\mu C_{0 x} W}{2 L} \\
& I_{02}=\frac{I_{T}}{2}+\left[V_{m} \sqrt{\frac{\theta I_{T}}{2}}-V_{m}^{3} \frac{3 \theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{ } \sqrt{T}}\right] \sin (\omega t)+\left[V_{m}^{3} \frac{\theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{T}}\right][\sin (3 \omega t)]
\end{aligned}
$$

$$
\mathrm{v}_{1} \rightarrow \mathrm{I}_{\mathrm{D} 1} \downarrow \mathrm{M}_{1}^{\mathrm{M}_{1}}
$$

Note this has no second-order harmonic term thus the dominant distortion when $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$ will be due to the third-order harmonic

$$
\begin{gathered}
\mathrm{I}_{\mathrm{D} 2} \simeq a_{0}+a_{1} \sin (\omega \mathrm{t})+a_{3}(3 \omega \mathrm{t}) \\
a_{1}=\left[\mathrm{V}_{\mathrm{m}} \sqrt{\frac{\theta \mathrm{I}_{\mathrm{T}}}{2}}-\mathrm{V}_{\mathrm{m}}^{3} \frac{3 \theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{l_{\mathrm{T}}}}\right] \quad a_{3}=\left[\frac{\theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{\mathrm{l}_{\mathrm{T}}}}\right] \mathrm{V}_{\mathrm{m}}^{3}
\end{gathered}
$$

How linear is the amplifier?

$$
\mathrm{I}_{\mathrm{D} 2} \simeq a_{0}+a_{1} \sin (\omega \mathrm{t})+a_{3} \sin (3 \omega \mathrm{t})
$$

$\left(\sqrt{\sum_{k=2}^{\infty} a_{k}^{2}}\right) \quad a_{1}=\left[\mathrm{V}_{\mathrm{m}} \sqrt{\frac{\theta I_{\mathrm{T}}}{2}}-\mathrm{V}_{\mathrm{m}}^{3} \frac{3 \theta^{2}}{16 \sqrt{2} \sqrt{l_{\mathrm{T}}}}\right] \quad a_{3}=\left[\frac{\theta^{2}}{16 \sqrt{2} \sqrt{l_{\mathrm{T}}}}\right] \mathrm{V}_{\mathrm{m}}^{3}$
For low distortion want THD a large negative number
Substituting in we obtain
$T H D=20 \log \left(\frac{\frac{\theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{l_{T}}} V_{m}^{3}}{V_{m} \sqrt{\frac{\theta I_{T}}{2}}-V_{m}^{3} \frac{3 \theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{l_{T}}}}\right)$
where $\theta=\frac{\mu \mathrm{C}_{0 x} W}{2 L}$

This expression gives little insight.
Consider expression in the practical parameter domain:

$$
\mathrm{I}_{\mathrm{T}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{EB} 1}^{2}
$$

How linear is the amplifier?

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D} 2} \simeq a_{0}+a_{1} \sin (\omega \mathrm{t})+a_{3} \sin (3 \omega \mathrm{t}) \\
& \mathrm{THD}=20 \log \left(\begin{array}{c}
\frac{\theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{l_{\mathrm{T}}}} \mathrm{~V}_{\mathrm{m}}^{3} \\
\left.\mathrm{~V}_{\mathrm{m}}^{\sqrt{\frac{\theta_{T}}{2}}-\mathrm{V}_{\mathrm{m}}^{3} \frac{3 \theta^{\frac{3}{2}}}{16 \sqrt{2} \sqrt{l_{T}}}}\right)
\end{array}{ }_{\mathrm{T}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\theta=\frac{\mu C_{o x} W}{2 L} \\
I_{T}=\frac{\mu C_{o x} W}{L} V_{E B 1}^{2}
\end{gathered}
$$

Eliminating I_{T} and θ, we obtain

$$
\begin{array}{c|}
\mathrm{V}_{\mathrm{m}} / \mathrm{V}_{\mathrm{EB} 1} \\
2.5 \\
1
\end{array}
$$

Thus to minimize THD, want $\mathrm{V}_{\text {EB }}$ large and V_{m} small

Bipolar Differential Pair

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{d}}=\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}} \\
& V_{1}=V_{E}+V_{t} \ln \left(\frac{I_{C 1}}{J_{S} A_{E 1}}\right) \\
& \mathbf{V}_{2}=\mathbf{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{~J}_{\mathrm{S}} \mathrm{~A}_{\mathrm{E} 2}}\right)
\end{aligned}
$$

$$
V_{d}=V_{t}\left(\ln \left(\frac{I_{C 2}}{J_{S} A_{E 2}}\right)-\ln \left(\frac{I_{C 1}}{J_{S} A_{E 1}}\right)\right) \stackrel{A_{E}=A_{E 2}}{=} V_{t} \ln \left(\frac{I_{C 2}}{I_{C 1}}\right)
$$

Bipolar Differential Pair

$$
\begin{gathered}
V_{d}=V_{t}\left(\ln \left(\frac{I_{C 2}}{J_{\mathrm{S}} A_{E 2}}\right)-\ln \left(\frac{I_{C 1}}{J_{S} A_{E 1}}\right)\right) \stackrel{A_{E}=A_{\mathrm{E} 2}}{=} V_{t} \ln \left(\frac{I_{\mathrm{C} 2}}{I_{\mathrm{C} 1}}\right) \\
V_{d}=V_{t} \ln \left(\frac{I_{T}-I_{C 1}}{I_{C 1}}\right) \\
V_{d}=V_{t} \ln \left(\frac{I_{C 2}}{I_{T}-I_{C 2}}\right)
\end{gathered}
$$

$V_{d}=V_{2}-V_{1}$

$$
\text { At } \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{T}} / 2, \mathrm{~V}_{\mathrm{d}}=0
$$

As $\mathrm{I}_{\mathrm{C} 1}$ approaches $0, \mathrm{~V}_{\mathrm{d}}$ approaches infinity
As $\mathrm{I}_{\mathrm{C} 1}$ approaches $\mathrm{I}_{\mathrm{T}}, \mathrm{V}_{\mathrm{d}}$ approaches minus infinity
Transition much steeper than for MOS case

Transfer Characteristics of Bipolar Differential Pair

Transition much steeper than for MOS case Asymptotic Convergence to 0 and I_{T}

Signal Swing and Linearity of Bipolar Differential Pair

$$
I_{F I T}=m V_{d}+h
$$

$$
\left.\frac{\partial V_{d}}{\partial I_{C 1}}\right|_{Q=p o \mathrm{int}}=-\left.V_{t} \frac{I_{T}}{I_{C 1}\left(I_{T}-I_{C 1}\right)}\right|_{I_{1} 1=\frac{I_{T}}{2}}
$$

$$
\left.\frac{\partial V_{d}}{\partial I_{C 1}}\right|_{Q=p o i n t}=-\frac{4 V_{t}}{I_{T}}
$$

$$
V_{d \mathrm{int}}=-\frac{h}{m}=?
$$

$$
I_{F I T}=-\frac{I_{T}}{4 V_{t}} V_{d}+\frac{I_{T}}{2}
$$

$$
V_{d i n t}=-\frac{h}{m}=2 V_{t}
$$

Signal Swing and Linearity of Bipolar Differential Pair

Signal Swing and Linearity of Bipolar Differential Pair

Note V_{d} axis intercept for BJT pair typically much smaller than for MOS pair $\left(\mathrm{V}_{\text {EB }}\right)$ but designer has no control of intercept for BJT pair

How linear is the amplifier?

Distortion in the differential pair is another useful metric for characterizing linearity of $\mathrm{I}_{\mathrm{C} 1}$ and $\mathrm{I}_{\mathrm{C} 2}$ with sinusoidal differential excitation

Consider again the differential pair and assume excited differentially with

$$
V_{2}=\frac{V_{d}}{2} \quad V_{1}=-\frac{V_{d}}{2} \quad \text { and assume } V_{d}=V_{m} \sin (\omega t)
$$

$$
V_{d}=V_{2}-V_{1}
$$

Recall:

$$
V_{d}=V_{t} \ln \left(\frac{I_{T}-I_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 1}}\right)
$$

Thus can express as

$$
\begin{aligned}
& e^{\frac{V_{d}}{V_{t}}}=\frac{I_{T}-I_{C 1}}{I_{C 1}} \\
& I_{C 1}=I_{T}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-1}
\end{aligned}
$$

How linear is the amplifier?

$$
I_{C 1}=I_{T}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-1}
$$

$$
\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})
$$

Consider a Taylor's Series Expansion

$$
I_{C 1}=\left.I_{C 1}\right|_{V_{d}=0}+\left.\frac{\partial I_{C 1}}{\partial V_{d}}\right|_{V_{d}=0} V_{d}+\left.\frac{1}{2!} \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}\right|_{V_{d}=0} V_{d}^{2}+\left.\frac{1}{3!} \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}\right|_{V_{d}=0} V_{d}^{3}+\text { H.O.T }
$$

How linear is the amplifier?

$$
\begin{aligned}
& I_{C 1}=I_{T}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-1} \quad V_{d}=V_{m} \sin (\omega t) \\
& I_{C 1}=\left.I_{C 1}\right|_{V_{d}=0}+\left.\frac{\partial I_{C 1}}{\partial V_{d}}\right|_{V_{d}=0} V_{d}+\left.\frac{1}{2!} \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}\right|_{V_{d}=0} V_{d}^{2}+\left.\frac{1}{3!} \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}\right|_{V_{d}=0} V_{d}^{3}+\text { H.O.T } \\
& \frac{\partial I_{C 1}}{\partial V_{d}}=-\frac{I_{T}}{V_{t}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-2} e^{\frac{V_{d}}{V_{t}}} \\
& \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}=-\frac{I_{T}}{V_{t}}\left[\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-2} e^{\frac{V_{d}}{V_{t}}} \frac{1}{V_{t}}-2 e^{\frac{V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3} e^{\frac{V_{d}}{V_{t}}} \frac{1}{V_{t}}\right] \\
& \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}=-\frac{I_{T}}{V_{t}^{2}}\left[\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-2} e^{\frac{V_{d}}{V_{t}}}-2 e^{\frac{2 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3}\right] \\
& \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}=-\frac{I_{T}}{V_{t}^{2}}\left[\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-2} e^{\frac{V_{d}}{V_{t}}} \frac{1}{V_{t}}-2 e^{\frac{V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3} e^{\frac{V_{d}}{V_{t}}} \frac{1}{V_{t}}+6 e^{\frac{2 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-4} e^{\frac{V_{d}}{V_{t}}} \frac{1}{V_{t}}-2 e^{\frac{2 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3} \frac{2}{V_{t}}\right] \\
& \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}=-\frac{I_{T}}{V_{t}^{3}}\left[\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-2} e^{\frac{V_{d}}{V_{t}}}-2 e^{\frac{2 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3}+6 e^{\frac{3 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-4}-4 e^{\frac{2 V_{d}}{V_{t}}}\left(1+e^{\frac{V_{d}}{V_{t}}}\right)^{-3}\right]
\end{aligned}
$$

How linear is the amplifier?

$$
\mathrm{V}_{1}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) \\
& I_{C 1}=\left.I_{C 1}\right|_{V_{d}=0}+\left.\frac{\partial I_{C 1}}{\partial V_{d}}\right|_{V_{d}=0} V_{d}+\left.\frac{1}{2!} \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}\right|_{V_{d}=0} V_{d}^{2}+\left.\frac{1}{3!} \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}\right|_{V_{d}=0} V_{d}^{3}+\text { H.O.T } \\
& \left.\frac{\partial_{c_{c}}}{\partial V_{d}}\right|_{V_{t}=0}=-\left.\frac{I_{T}}{V_{t}}\left(1+e^{\frac{V_{V}}{V_{i}}}\right)^{-2} e^{\frac{V_{t}}{V_{t}}}\right|_{r_{t}=0}=-\frac{I_{T}}{V_{t}}(2)^{-2}=-\frac{l_{T}}{4 V_{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}}\right|_{V_{d}=0}=-\left.\frac{\mathrm{I}_{\mathrm{T}}}{4 \mathrm{~V}_{\mathrm{t}}} \quad \frac{\partial^{2} \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}^{2}}\right|_{V_{d}=0}=\left.0 \quad \frac{\partial^{3} \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}^{3}}\right|_{V_{d}=0}=\frac{\mathrm{I}_{\mathrm{T}}}{8 \mathrm{~V}_{\mathrm{t}}^{3}}
\end{aligned}
$$

How linear is the amplifier?

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) \\
& I_{C 1}=\left.I_{C 1}\right|_{V_{d}=0}+\left.\frac{\partial I_{C 1}}{\partial V_{d}}\right|_{V_{d}=0} V_{d}+\left.\frac{1}{2!} \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}\right|_{V_{d}=0} V_{d}^{2}+\left.\frac{1}{3!} \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}\right|_{V_{d}=0} V_{d}^{3}+\stackrel{1}{+} . O . T \\
& \left.\frac{\partial \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}}\right|_{V_{d}=0}=-\left.\frac{\mathrm{I}_{\mathrm{T}}}{4 \mathrm{~V}_{\mathrm{t}}} \quad \frac{\partial^{2} \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}^{2}}\right|_{V_{d}=0}=\left.0 \quad \frac{\partial^{3} \mathrm{I}_{\mathrm{C} 1}}{\partial \mathrm{~V}_{\mathrm{d}}^{3}}\right|_{V_{d}=0}=\frac{\mathrm{I}_{\mathrm{T}}}{8 \mathrm{~V}_{\mathrm{t}}^{3}} \\
& I_{C 1} \cong \frac{I_{T}}{2}-\frac{I_{T}}{4 V_{t}} V_{d}+\frac{I_{T}}{48 V_{t}^{3}} V_{d}^{3} \\
& I_{C 1} \cong \frac{I_{T}}{2}-\frac{I_{T}}{4 V_{t}} V_{m} \sin (\omega \mathrm{t})+\frac{\mathrm{I}_{\mathrm{T}}}{48 \mathrm{~V}_{\mathrm{t}}^{3}} \mathrm{~V}_{\mathrm{m}}^{3} \sin ^{3}(\omega \mathrm{t}) \\
& \sin ^{3}(\omega \mathrm{t})=\frac{3}{4} \sin (\omega \mathrm{t})-\frac{1}{4} \sin (3 \omega \mathrm{t})
\end{aligned}
$$

How linear is the amplifier ?

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) \\
& I_{C 1}=\left.I_{C 1}\right|_{V_{d}=0}+\left.\frac{\partial I_{C 1}}{\partial V_{d}}\right|_{V_{d}=0} V_{d}+\left.\frac{1}{2!} \frac{\partial^{2} I_{C 1}}{\partial V_{d}^{2}}\right|_{V_{d}=0} V_{d}^{2}+\left.\frac{1}{3!} \frac{\partial^{3} I_{C 1}}{\partial V_{d}^{3}}\right|_{V_{d}=0} V_{d}^{3}+H . O \cdot T \\
& I_{C 1} \cong \frac{\mathrm{I}_{\mathrm{T}}}{2}-\frac{\mathrm{I}_{\mathrm{T}}}{4 \mathrm{~V}_{\mathrm{t}}} \mathrm{~V}_{\mathrm{m}} \sin (\omega \mathrm{t})+\frac{\mathrm{I}_{\mathrm{T}}}{48 \mathrm{~V}_{\mathrm{t}}^{3}} \mathrm{~V}_{\mathrm{m}}^{3}\left[\frac{3}{4} \sin (\omega \mathrm{t})-\frac{1}{4} \sin (3 \omega \mathrm{t})\right] \\
& I_{C 1} \cong \frac{\mathrm{I}_{\mathrm{T}}}{2}+\left[\frac{3 \mathrm{I}_{\mathrm{T}}}{4 \bullet 48 \mathrm{~V}_{\mathrm{t}}^{3}} \mathrm{~V}_{\mathrm{m}}^{3}-\frac{\mathrm{I}_{\mathrm{T}}}{4 \mathrm{~V}_{\mathrm{t}}} \mathrm{~V}_{\mathrm{m}}\right] \sin (\omega \mathrm{t})-\frac{\mathrm{I}_{\mathrm{T}}}{4 \bullet 48 \mathrm{~V}_{\mathrm{t}}^{3}} \mathrm{~V}_{\mathrm{m}}^{3} \sin (3 \omega \mathrm{t})
\end{aligned}
$$

Thus:

$$
\mathrm{THD}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{m}}^{2}}{\left[48 \mathrm{~V}_{\mathrm{t}}^{2}-3 \mathrm{~V}_{\mathrm{m}}^{2}\right]}\right)
$$

or, equivalently

$$
\mathrm{THD}=-20 \log \left(48\left(\frac{\mathrm{~V}_{\mathrm{t}}}{\mathrm{~V}_{\mathrm{m}}}\right)^{2}-3\right)
$$

V_{m} / \vee_{t}		THD (dB)
2.5	-13.4049	
1	-33.0643	
	0.5	-45.5292
0.25	-57.6732	
0.1	-73.6194	
0.05	-85.6647	
0.025	-97.7069	
0.01	-113.625	

Comparison of Distortion in BJT and MOSFET Pairs

$T H D=-20 \log \left(48\left(\frac{V_{t}}{V_{m}}\right)^{2}-3\right)$

$$
V_{d}=V_{m} \sin (\omega t)
$$

$T H D=-20 \log \left(32\left(\frac{V_{\text {EB1 }}}{V_{m}}\right)^{2}-3\right)$

$\mathrm{V}_{\mathrm{m}} / \mathrm{V}_{\text {EB1 }}$	THD (dB)
2.5	-6.52672
1	-29.248
0.5	-41.9382
0.25	-54.1344
0.1	-70.0949
0.05	-82.1422
0.025	-94.1849
0.01	-110.103

Linearity and Signal Swing Comparison of Bipolar/MOS Differential Pair

Have completed linearity analysis but must now look at the implications

Stay Safe and Stay Healthy !

End of Lecture 20

